Study of the Wallach Rearrangement in the Phenylazoxypyridine Series. Differing Reactivity of α- and β-Azoxy Isomers

Erwin Buncel* and Sam-Rok Keum

Department of Chemistry, Queen **S** *University, Kingston, Ontario, Canada, K7L 3N6*

The rearrangement of 4- **(phenyl-/3-azoxy)pyridine** to 4- **hydroxyphenylazopyridine** has been investigated in H_2SO_4 media under conditions where the α -azoxy isomer is virtually unreactive; a mechanism involving a tricationic reaction intermediate is proposed.

In studies of the acid catalysed Wallach rearrangement of azoxyarenes,¹ much information about mechanism has been deduced from structural changes in the azoxyarene, and from azoxyarenes,¹ much information about mechanism has been
deduced from structural changes in the azoxyarene, and from
the kinetic form of the acid catalysis.² Thus isomeric α - and β -
azoxybenzenes (1) and (2), whi azoxybenzenes (1) and (2), while generally giving rise to the same rearrangement product $(4-X-4'$ -hydroxyazobenzene), (1) have been found to exhibit relative rates varying from ca. 1:1

(X=Br) to 90:1 (X=NO₂).³ The isomeric α - and β -2-phenyl-

azoxynaphthalenes have been shown, on the basis of kinetic

evidence, to rearrange by dif have been found to exhibit relative rates varying from ca. 1:1 azoxynaphthalenes have been shown, on the basis of kinetic rise to a common product, 2-phenylazo-1-naphthol.⁴ (X=Br) to $90:1$ (X=NO₂).³ The isomeric α - and β -2-phenyl- $\qquad \qquad \qquad$ 0⁻ evidence, to rearrange by different mechanisms while giving
rise to a common product, 2-phenylazo-1-naphthol.⁴
In an extension of our studies of the Wallach rearrange-
ment into the hatercauslic carios we have been invo

ment into the heterocyclic series, we have begun investigation **(3)**

Table 1. Kinetic data for rearrangement of 4-(phenyl- β -azoxy)-pyridine **(4)** in aqueous H_2SO_4 at 50 °C.

H ₂ SO ₄ wt. %	$[SH_2^{2+}]^a$ $[SH^+] + [SH_2^{2+}]$	10 ⁴ k _{obs} $\sqrt{S^{-1}}$
97.17	0.756	0.229
98.46	0.881	1.52
98.91	0.901	2.68
99.17	0.020	5.14
99.47	0.944	9.45
99.62	0.958	23.5
99.74	0.973	80.2
99.82	0.976	85.5
99.88	0.982	168
99.91	0.986	270

a Calculated from the relationship $pK_a = H_0 + \log \left[\frac{SH_2^{2+}}{H_2}\right] / \left[\frac{SH_1^{2+}}{H_2}\right]$ where **SH+** denotes the substrate protonated on the pyridine nitrogen while $SH₂²⁺$ is the species protonated on the azoxy N-O function as well.

Scheme 1

of phenylazoxypyridines and report here the first kinetic and product studies pertaining to such systems. Contrary to previous findings, we have isolated both isomers 4-(phenyl-aazoxy)pyridine **(3)** and $4-(\text{phenyl-}\beta\text{-}azoxy)$ pyridine **(4)** in the oxidation of 4-phenylazopyridine. 5

Unexpectedly, we have found that **(3)** does not undergo detectable rearrangement? under conditions where **(4)** reacts readily to give **4-hydroxyphenylazopyridine (95-100** % **H2S04). A** similar reactivity difference has been found for the corresponding α - and β -phenylazoxypyridine N-oxides. This difference in reactivity enables one to separate cleanly the *a*isomers from the mixture of α - and β -azoxy compounds obtained on oxidation of phenylazopyridines. These results may lead to a facile chemical method for the evaluation of regioselectivity in the oxidation of phenylazopyridines, contrasting with the azobenzene series.⁶

The rate of rearrangement of **(4)** was conveniently followed spectrophotometrically in the 97-99.9% H_2SO_4 region at 50 $\rm ^{\circ}C.$ The results are given in Table 1. The p $K_{\rm a}$ for N–O protonation of (4) has been determined to be -9.58 (H_0 for half

protonation)' from which it follows that N-0 as well as pyridine ring protonation of **(4)** is extensive over the whole acid region studied. Thus on increasing the acid concentration from 97.17 to 99.91% H₂SO₄ the extent of protonation increases from **76** to **99%,** while the rate of rearrangement increases more than 1000-fold over this range. This marked increase in rate in acid media in which the substrate is extensively diprotonated indicates that a third proton transfer step is required for reaction to occur. The results suggest a mechanism involving a tricationic intermediate **(6)** formed through rate determining proton transfer⁸ to (5), followed by attack of nucleophile $(HSO₄)$ on the phenyl ring to give product (Scheme **1).**

In the transition state **(7)** of the slow step the developing positive charge on nitrogen can be delocalized onto the benzene ring; this, however, is not possible in the corresponding transition state structure **(8)** derived from **(3)** resulting in destabilization.

Financial support of this research by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Received, 8th December 1982; Corn. 1417

References

- **¹**E. Buncel in 'Mechanisms of Molecular Migrations,' Vol. **1,** ed. B. **S.** Thyagarajan, Wiley, New York, **1968;** R. A. COX and E. Buncel in 'The Chemistry of the Hydrazo, Azo and Azoxy Groups,' ed. **S.** Patai, Wiley, New York, **1975;** E. Buncel, *Acc. Chem. Res.,* **1975, 8, 132.**
- **2 D.** L. **H.** Williams, in 'Comprehensive Chemical Kinetics,' Vol. **13,** eds. C. **H.** Bamford and C. F. **H.** Tipper, Elsevier, Amsterdam, **1972.**
- **3** P. **H.** Gore, *Chem. lnd. (London),* **1959, 191;** C. **S.** Hahn and H. **H.** Jaffe, J. *Am. Chem. SOC.,* **1962,84,946;** C. **S.** Hahn, **K.** W. Lee, and H. **H.** Jaffe, *ibid.,* **1967,89,4975; D.** Duffey and E. **C.** Hendley, *J. Org. Chem.,* **1968,** *33,* **1918;** *ibid.,* **1970, 35, 3579.**
- **4** E. Buncel, R. **A.** Cox, and A. Dolenko, *Tetrahedron Lett.,* **1975, 215.**
- **5** E. Buncel and **S.** R. Keum, unpublished results.
- **⁶**M. A. Berwick and R. E. Rondeau, J. *Org. Chem.,* **1972,** *37,* **2409; B.** T. Newbold in 'The Chemistry of the Hydrazo, Azo and Azoxy Groups,' ed. **S.** Patai, Wiley, New York, **1975.**
- **7 C. H.** Rochester, 'Acidity Functions,' Academic Press, London, **1970;** M. Liler, 'Reaction Mechanisms in Sulphuric Acid,' Academic Press, London, **1971.**
- **8** E. Buncel and R. A. Cox, J. *Am. Chem.* **Soc., 1975,97, 1871.**

 \dagger No reaction could be detected for (3) in *ca*. 99% H_2SO_4 at **⁵⁰**"C over **24** h whereas **(4)** reacts rapidly under these con- ditions (Table 1).